Preview

Horticulture and viticulture

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of the fatty acid composition and genetic relationships of walnut cultivars and elite forms from the gene pool at the North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making to enhance the breeding efficiency for the biological value of fruits

https://doi.org/10.31676/0235-2591-2025-4-5-14

Abstract

The article presents the results of studying the fatty acid composition of fruits in 23 walnut cultivars and elite forms from the gene pool at the North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making as well as their genetic relationships based on microsatellite genotyping. The total fat and the content of individual polyunsaturated, monounsaturated, and saturated fatty acids in the fruits were determined. Ten microsatellite DNA markers were used to analyze genetic diversity. The total fat content in the fruit kernel (oil content) was found to vary within the range of 67.54–77.85 %. The Rodina cultivar (>75 %) and the elite forms Slavyanin, Shchedry, Saturn, Vengersky, Izyashny, and Konkistador (about 75%) have the highest oil content. In terms of the polyunsaturated fatty acid content in the oil, the cultivar Pelan (79.72 %) and the elite forms Slavyanin (75.59 %), Saturn (75.60 %), Topaz (77.46 %) stand apart. The cultivars Zarya Vostoka (73.97 %), Urozhainy (74.44 %), and Dachny (74.78 %), as well as the elite forms Izyashny (72.29 %), Maslenichny (72.47 %), Yuzhanin (71.80 %), and Vengersky (71.79 %) are also valuable in this respect. The samples Izyashny, Konkistador, Dachny, and Slavyanin have the most optimal Omega-6 (linoleic acid) to Omega-3 (alpha-linolenic acid) ratio (within the range of 3/1–4/1). Genetic diversity analysis determined the average number of alleles per locus to be 6.700, and the average effective number of alleles per locus to be 4.116, which indicates a relatively high level of genetic diversity. According to the results of genetic relationship analysis of the studied sample, two groups with the greatest genetic similarity were identified. These findings are consistent with the origin of the samples. In the identified groups of the strongest genetic similarity, samples possessing both individual economic traits and their complexes were selected. Pairs of samples promising for selective breeding were proposed. The most valuable samples for breeding include Saturn, Pelan, Urozhainy, Zarya Vostoka, and Shchedry (group № 1) as well as Slavyanin, Rodina, Dachny, Izyashny, and Konkistador (group № 2).

About the Authors

I. I. Suprun
North Caucasian Federal Scientifi c Center of Horticulture, Viticulture, Wine-making
Russian Federation

I. I. Suprun, PhD (Biol.), Head of the Functional Scientific Center «Breeding and Nursery»

st. 40 years of Victory, 39, Krasnodar, 350901



E. A. Al-Nakib
North Caucasian Federal Scientifi c Center of Horticulture, Viticulture, Wine-making
Russian Federation

E. A. Al-Nakib, Postgraduate student, Junior Researcher Associate of Breeding and Biotechnology Laboratory

Krasnodar



I. V. Stepanov
North Caucasian Federal Scientifi c Center of Horticulture, Viticulture, Wine-making
Russian Federation

I. V. Stepanov, Junior Researcher Associate of Breeding and Biotechnology Laboratory

Krasnodar



E. V. Lobodina
North Caucasian Federal Scientifi c Center of Horticulture, Viticulture, Wine-making
Russian Federation

E. V. Lobodina, PhD (Tech.), Researcher Associate of Breeding and Biotechnology Laboratory

Krasnodar



E. A. Kozhevnikov
North Caucasian Federal Scientifi c Center of Horticulture, Viticulture, Wine-making
Russian Federation

E. A. Kozhevnikov, Postgraduate Student, Junior Researcher for Grape Variety Study and Selection Laboratory

Krasnodar



References

1. Binici H. İ., Şat İ. G., Aoudeh, E. Nutritional composition and health benefits of walnut and its products, Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52(2):224-230. DOI: 10.17097/ataunizfd.843028.

2. Yang H., Xiao X., Li J. et al. Chemical compositions of walnut (Juglans Spp.) oil: Combined effects of genetic and climatic factors, Forests. 2022;13(6):962. DOI: 10.3390/f13060962.

3. Hama J. R., Fitzsimmons-Thoss V. Determination of unsaturated fatty acids composition in walnut (Juglans regia L.) oil using NMR spectroscopy, Food Analytical Methods. 2022;15(5):1226-1236. DOI: 10.1007/s12161-021-02203-0.

4. Ada M., Paızıla A., Bilgin Ö. F. et al. Determination of fat, fatty acids and tocopherol content of several Turkish walnut cultivars, International Journal of Agriculture Forestry and Life Sciences. 2021;5(1):94-100.

5. Rezaei A., Arzan, K., Sarikhani S. The assessments of biochemical characteristics for the superior walnut (Juglans regia L.) genotypes, Eur J Hortic Sci. 2023;88(4):1-12. DOI: 10.17660/eJHS.2023/025.

6. Aydın Ç. M., Güven, A. Seed content and its oil composition in walnut cultivated from Tunceli, Türkiye, Cogent Food & Agriculture. 2024;10(1):2297517. DOI: 10.1080/23311932.2023.2297517.

7. Alkan Ş. B., Öksüz A. Comparison of the fatty acid composition of pecan and walnuts from various regions and the development of a rapid analytical method, Food and Health. 2025;11(1):14-26. DOI: 10.3153/FH25002.

8. Kafkas E., Attar S. H., Gundesli M. A. et al. Phenolic and fatty acid profile, and protein content of different walnut cultivars and genotypes (Juglans regia L.) grown in the USA, International Journal of Fruit Science. 2020;20:S1711-S1720. DOI: 10.1080/15538362.2020.1830014.

9. Liu B., Liang J., Zhao D. et al. Morphological and compositional analysis of two walnut (Juglans regia L.) cultivars growing in China, Plant Foods Hum. Nutr. 2020;75:116-123. DOI: 10.1007/s11130-019-00794-y.

10. Mir J. I., Irfan M., Rashid U. et al. Comparative Pomological and Biochemical Characterization of Indigenous Walnut (Juglans regia) Genotypes from Temperate Region, Applied Fruit Science.2025;67:119. DOI: 10.1007/s10341-025-01372-0.

11. Özcan A., Taşcı H., Bükücü Ş.B. et al. Inheritance patterns of pomological traits in walnut hybridization breeding: influence of parental varieties on nut traits, BMC Plant Biol. 2025;25:98. DOI: 10.1186/s12870-025-06124-6.

12. Shah R. A., Bakshi P., Jasrotia A. et al. Morphological to Molecular Markers: Plant Genetic Diversity Studies in Walnut (Juglans regia L.) A Review, Erwerbs-Obstba. 2023;65:1499-1511. DOI: 10.1007/s10341-023-00892-x.

13. Shahi S. R., Qi H. L., Mafakheri M. et al. Unravelling the genetic diversity and population structure of common walnut in the Iranian Plateau, BMC Plant Biol. 2023;23:201. DOI: 10.1186/s12870-023-04190-2.

14. Suprun I., Stepanov I., Anatov D. Analysis of Genetic Diversity and Relationships of Local Walnut Populations in the Western Caspian Region of the North Caucasus, Horticulturae. 2025;11:65. DOI: 10.3390/horticulturae11010065.

15. Ling N. C., Qing G. M., Yong K.C. et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers, Scientia Horticulturae. 2014;168;240-248. DOI: 10.1016/j.scienta.2014.02.004.

16. Orhan E., Peral E. S., Poljuha D. et al. Genetic diversity detection of seed-propagated walnut (Juglans regia L.) germplasm from Eastern Anatolia using SSR markers, Folia Horticulturae. 2020;32(1):37-46. DOI: 10.2478/fhort-2020-0004.

17. Efimenko S. G., Efimenko S. K., Usatenko L. O. Determination of oil content and essential fatty acids of winter rapeseeds using IR spectrometry, Oil crops. 2023;2(194):40-50. DOI: 10.25230/2412-608X-2023-2-194-40-50. (in Russ.).

18. Rogers S. O., Bendich A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Molecular Biology. 1985;5:69-76. DOI: 10.1007/BF00020088.

19. Dangl G. S., Woeste K., Aradhya M. K., et al. of 14 microsatellite markers for genetic analysis and cultivar identification of walnut, Journal of the American Society for Horticultural Science. 2005;130(3):348-354.

20. Peakall R., Smouse P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchan update, Bioinformatics. 2012;28:2537-2539. DOI: 10.1093/bio-informatics/bts460.

21. Hammer O., Harper D. A. T., Ryan P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontologia Electronica. 2001;4(1):1-9.

22. Pritchard J. K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data, Genetics. 2000;155:945-959. DOI: 10.1093/genetics/155.2.945.

23. Earl D. A., von Holdt B. M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method, Conservation Genetics Resources. 2012;4:359-361. DOI: 10.1007/s12686-011-9548-7.

24. Beyhan O., Ozcan A., Ozcan H. et al. Fat, fatty acids and tocopherol content of several walnut genotypes, Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2017;45(2):437-441. DOI: 10.15835/nbha45210932.

25. Nogales-Bueno J., Baca-Bocanegra B., Hernández-Hierro J. M., et al. Assessment of total fat and fatty acids in walnuts using near-infrared hyperspectral imaging, Frontiers in Plant Science. 2021;12:729880.

26. Akbari V., Heidari R., Jamei R. Fatty acid compositions and nutritional value of six walnut (Juglans regia L.) cultivars grown in Iran, Advanced Herbal Medicine. 2014;1(1):36-41.

27. Du Junmin C. Y., Chang YueMei C. Y., Liu YingCui L. Y. The analysis of fat characteristics of 12 walnut cultivars in Shanxi Province, Acta Hortic. 2014;1050:285-290. DOI: 10.17660/Acta-Hortic.2014.1050.38.

28. Simopoulos A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomed Pharmacother. 2002;56(8):365-379. DOI: 10.1016/s0753-3322(02)00253-6. PMID: 12442909.

29. Savage G. P., Dutta P. C., McNeil D. L. Fatty acid and tocopherol contents and oxidative stability of walnut oils, Journal of the American Oil Chemists’ Society, 1999;76(9):1059-1063. DOI: 10.1007/s11746-999-0204-2.

30. Yildiz E., Pinar H., Uzun A., et al. Identification of genetic diversity among Juglans regia L. genotypes using molecular, morphological, and fatty acid data Genetic Resources and Crop Evolution. 2021;68:1425-1437.

31. Bozhuyuk M. R., Ercisli S., Orhan E., Koc A. Determination of the genetic diversity of walnut (Juglans regia L.) cultivar candidates from northeastern turkey using SSR markers, Mittei-lungen Klosterneuburg. 2020;70:269-277.

32. Cseke K., Bujdosó G., Báder M. et al. Genetic Identification of Hybrid Walnuts (Juglans × intermedia Carr.) in Hungary, the Hidden Potential for Future Breeding, Sustainability. 2022;14:4782. DOI: 10.3390/su14084782.

33. Ebrahimi A., Zarei A., Lawson S., Woeste K. E., Smulders M. J. M. Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers, Tree Genetics & Genomes. 2016;12:114. DOI: 10.1007/s11295-016-1075-y.

34. Vischi M., Chiabà C., Raranciuc S., et al. Genetic Diversity of Walnut (Juglans Regia L.) in the Eastern Italian Alps, Forests 2017;8:81.

35. Feng X., Zhou H., Zulfiqar S., et al. The Phytogeographic History of Common Walnut in China, Frontiers in Plant Science.2018;9:1399.

36.


Review

For citations:


Suprun I.I., Al-Nakib E.A., Stepanov I.V., Lobodina E.V., Kozhevnikov E.A. Analysis of the fatty acid composition and genetic relationships of walnut cultivars and elite forms from the gene pool at the North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making to enhance the breeding efficiency for the biological value of fruits. Horticulture and viticulture. 2025;(4):5-14. (In Russ.) https://doi.org/10.31676/0235-2591-2025-4-5-14

Views: 19


ISSN 0235-2591 (Print)
ISSN 2618-9003 (Online)