Preview

Horticulture and viticulture

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Effect of a microorganism consortium-based fertilizer on the nutrition regime and yield of apple trees in an intensive orchard

https://doi.org/10.31676/0235-2591-2025-5-14-22

Abstract

Intensive horticulture implies the use of mineral fertilizers to maintain the desired yield and productivity of crops. Regular application of mineral fertilizers in high doses may have a detrimental impact on soil properties. This problem can be mitigated using microbiological fertilizers, capable of increasing the content of available nutrients. In this work, we investigate the possibility of applying a formulation based a microbial consortium (MC) of several species of bacteria and yeast. Today, such formulations are widely and successfully used in agriculture. Our aim was to study the eff ectiveness of MC for fertigation in an intensive apple orchard. The fertigation modes were the single-factor application of MC and its combination with reduced doses of mineral fertilizers, both separately and in combination. The research was conducted in 2022-2024; the contents of essential nutrients in the soil and leaves, as well as the apple tree yield, were studied. The single- factor application of MC (15 L/ha) and its separate application (9 L/ha) with mineral fertilizers N9.8P5.4K18.0 had the greatest eff ect on the content of easily hydrolyzable nitrogen in the soil. In the former case (MC only), the nitrogen content of 160.0–262.2 mg/kg was achieved (in 2024, the nitrogen content in the soil was noticeably lower than in 2022–2023, although being maximal in this variant). In the latter case (MC + mineral fertilizers), the content of easily hydrolyzable nitrogen was 148.3–218.8 mg/kg. The content of mobile phosphorus in the soil in all variants with the application of MС in various combinations (159.9–287.9 mg/kg) was equal to that in the variant with the application of the maximum rate of mineral fertilizers (135.7–303.8 mg/kg). The maximum content of exchangeable potassium in the soil was observed under a separate application of MC + N9.8P5.4K18.0 (194.0–203.0 mg/kg). The use of MC contributed to an increase in soil pH (from 5.21 to 5.87 pH units) under its single-factor application. The highest content of total nitrogen in the leaves was observed with the application of the maximum rate of mineral fertilizers (1.93 % dry matter), while the single-factor application of MC (1.84% dry matter) led to the same level of the nutrient within the limits of experimental error. The phosphorus content in leaves depended signifi cantly on the application of mineral fertilizers (0.27–0.32 % dry matter), although the use of MC also contributed to an increase in the phosphorus concentration in some years. The potassium content in leaves under a single-factor application of MC (1.26–1.99 % dry matter) was higher than with the use of the maximum rate of mineral fertilizers (1.15–1.65 % dry matter), while the separate use of MC + N9.8P5.4K18.0 contributed to the potassium content at the same level (1.12–1.76 % dry matter). The maximum total yield (33.5 t/ha) was obtained with a single-factor application of MC. The separate application of MC + N9.8P5.4K18.0 did not lead to a signifi cant increase in the yield (30.5 t/ha) compared to the variant where the maximum rate of mineral fertilizers was used (31.9 t/ha). The greatest eff ect of MC use was observed during its single-factor application and when applied separately from mineral fertilizers.

About the Authors

A. I. Kuzin
Michurinsky State Agrarian University; Federal Scientifi c Center named after I.V. Michurin
Russian Federation

Dr. Sci. (Agric.), Leading Researcher

101, Internatsionalnaya str., Tambov oblast, Michurinsk, 393760



S. A. Karpukhina
Michurinsky State Agrarian University; Federal Scientifi c Center named after I.V. Michurin
Russian Federation

Junior Researcher

Michurinsk



V. N. Nazarov
Michurinsky State Agrarian University; Federal Scientifi c Center named after I.V. Michurin
Russian Federation

Junior Researcher

Michurinsk



A. A. Shmakova
Michurinsky State Agrarian University; Federal Scientifi c Center named after I.V. Michurin
Russian Federation

Junior Researcher

Michurinsk



References

1. Wang T., Xu J., Chen J., Liu P., Hou X., Yang L., Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research, Plants (Basel). 2024;13(3):346. DOI: 10.3390/plants13030346.

2. Williams P. M. Current use of legume inoculant technology. In: Alexander M, editor, Biological nitrogen fi xation. New York: Plenum Press, 1984, 173-200. DOI: 10.1007/978-1-4613-2747-9_8.

3. Gupta A., Bano A., Rai S., Dubey P., Khan F., Pathak N., Sharma S. Plant Growth Promoting Rhizobacteria (PGPR): A Sustainable Agriculture to Rescue the Vegetation from the Effect of Biotic Stress: A Review, Letters in Applied NanoBioSci. 2021;10(3):2459-2465. DOI: 10.33263/LIANBS103.24592465.

4. Wei X., Xie B., Wan C., Song R., Zhong W., Xin S., Song K. Enhancing Soil Health and Plant Growth through Microbial Fertilizers: Mechanisms, Benefi ts, and Sustainable Agricultural Practices, Agronomy. 2024;14(3):609. DOI: 10.3390/agronomy14030609.

5. Przybyłko S., Kowalczyk W., Wrona D. The Eff ect of Mycorrhizal Fungi and PGPR on Tree Nutritional Status and Growth in Organic Apple Production, Agronomy. 2021;11(7):1402. DOI: 10.3390/agronomy11071402.

6. Ivanova T. E., Lekomtseva E. V., Nesmelova L. A., Sokolova E. V., Tutova T. N. Effi ciency of use of microbiological fertilizers in growing strawberry garden on soddy-medium podzolic soil, Vegetable crops of Russia. 2022;(2):50-56. DOI: 10.18619/2072-9146-2022-2-50-56. (in Russ.).

7. Chekaev N. P., Koryagin Yu. V., Koryagina N. V., Pozubenkova E. I., Kozarenko A. Yu. The eff ectiveness of the use of microbiological fertilizers in the cultivation of crops, Niva Povolzhya, 2022,4(64):1004. DOI: 10.36461/NP.2022.64.4.007. (in Russ.).

8. Vasilenko M. G., Dulnev P. G., Zosimov V. D. The effi ciency of the microbial substance Embionik Zemledelie i selekciya v Belarusi: cb. nauch. tr. 2014; 50:248-255. (in Russ.).

9. Kuzin A. I., Trunov Yu. V., Solovyov A. V. Apple tree (Malus domestica Borkh.) nitrogen supply optimization by fertigation and bacterial fertilizers, Agricultural Biology. 2018;53(5):1013- 1024. DOI: 10.15389/agrobiology.2018.5.1013rus. (in Russ.).

10. Kuzin A. I., Akimov M. Yu., Pugachev G. N., Stepantsova L. V. Evaluating the effi cacy of bacterial phosphorus fertilizers in the apple orchard on chernozem soil, Acta Horticulturae. 2021;1327:533-540. DOI: 10.17660/ActaHortic.2021.1327.70.

11. Treder W., Klamkowski K., Wójcik K., Tryngiel-Gać A., Sas-Paszt L., Mika A., Kowalczyk W. Apple Leaf Macro- and Micronutrient Content as Aff ected by Soil Treatments with Fertilizers and Microorganisms, Scientia Horticulturae. 2022;297:110975. DOI: 10.1016/j.scienta.2022.110975.

12. Olanrewaju O. S., Ayangbenro A. S., Glicket B. R., Rabaloba O. O. Plant health: feedback eff ect of root exudates-rhizobiome interactions, Applied Microbiology and Biotechnology. 2019;103(3):1155-1166. DOI: 10.1007/s00253-018-9556-6.

13. Program and methodology of variety study of fruit, berry and nut crops. Pod red. E. N. Sedova, G. L. Ogol’covoj. Oryol: VNIISP. K, 1999. 608 s. (in Russ.).

14. Mineev V. G., Sychev V. G., Amelyanchik O. A., Bolysheva T. N., Gomonova N. F., Durynina E. P., Egorov B. S., Egorova E. V., Edemskaya N. L., Karpova E. A., Mezhukova V. G. Workshop on agrochemistry. 2001. M.: Izd-vo MGU, 2001. 689 s. (in Russ.).

15. RF patent for invention RU2 264 999C2/11.27.05. Bull. No.33. Nechesov I.A., Bulgadaeva R. V., Nechesova O. I., Nechesov O. I. Biopreparation for increasing productivity of agricultural crops. Available on https://elibrary.ru/item.asp?id=37970492 The link is active on 08.11.2025. (in Russ.).

16. Dospekhov B. A. Methodology of fi eld experiment. 5th ed., revised and additional M.: Agropromizdat,1985.351 p. (in Russ.).

17. Gushchina V. A., Nikolskaya E. O. The content of soil primary nutrients and seed productivity of echinacea purpurea by various methods of the Baikal EM1 preparation application, Niva Povolzhya. 2013;1(26):2-6. (in Russ.).

18. Zaitsev P. A., Kuzin A. I., Shurygin B. M., Skripnikova E. V., Karpukhina S. A., Zaitseva A. A., Solovchenko A. E. Assessment of the eff ect of fertilizers on the microbiome of apple trees using DNA metabarcoding, Rossijskie nanotekhnologii. 2023;18(3):416- 423. DOI: 10.56304/S1992722323030159. (in Russ.).

19. Tuan L. M., Huyen N. P. T., Thuy V. T. B., Quang L. T., Thu L. T. M., Dao N. T. X, Nhan T. C., Xuan L. L. T., Khuong N. Q. Eff ects of adding N2-fi xing Rhodopseudomonas palustris to stimulate the growth and yield of canary melon (Cucumis melo L.), PLoS One. 2025;20(8):e0329938. DOI: 10.1371/journal.pone.0329938.

20. Santos M. S., Nogueira M. A., Hungria M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of benefi cial bacteria in agriculture, AMB Express. 2019;9(1):205. DOI: 10.1186/s13568-019-0932-0.

21. Anh N. H., Phat C. T., Nhut L. M., Thu L. T. M., Trong N. D., Quang L. T., Xuan L. N. T., Nhan T. C., Phong N. T., Khuong N. Q. Eff ectiveness of Nitrogen-Fixing Bacteria Rhodobacter sphaeroides in Soil-Plant Nitrogen and Rice Performance in Extremely Saline Acid Sulfate Soil over Two Consecutive Seasons, Sustainability. 2025;17(5):2228. DOI: 10.3390/su17052228.

22. Khan A. N., Hassan M. N., Keyani R., Amir H. Z., Raish M., Singh R., Yasmin H. Potential of Lactobacillus agilis, Lactobacillus plantarum, and Lactobacillus acidophilus to enhance wheat growth under drought and heat stress, Journal of King Saud University – Science. 2024;36(9):103334. DOI: 10.1016/j.jksus.2024.103334.

23. Zhang S., Li Y., Wang P., Zhang H., Ali E. F., Li R., Shaheen S. M., Zhang Z. Lactic acid bacteria promoted soil quality and enhanced phytoextraction of Cd and Zn by mustard: a trial for bioengineering of toxic metal contaminated mining soils, Environmental Research. 2023;216:114646. DOI: 10.1016/j.envres.2022.114646.

24. Demir H., Saka A. K., Uçan U., Akgün İ. H., Yalçı H. K. Impact of eff ective micro-organisms (EM) on the yield, growth and bio-chemical properties of lettuce when applied to soil and leaves, BMC Plant Biology. 2024;24(1):1189. DOI: 10.1186/s12870-024-05980-y.

25. Caballero P., Rodríguez-Morgado B., Macías S., Tejada M., Parrado J. Obtaining plant and soil biostimulants by Waste Whey Fermentation, Waste Biomass Valorization. 2020;11:3281- 3292. DOI: 10.1007/s12649-019-00660-7.

26. Hesham A-L., Mohamed H.J.J.M.B. Molecular genetic identifi cation of yeast strains isolated from Egyptian soils for solubilization of inorganic phosphates and growth promotion of corn plants, Journal of Microbiology and Biotechnology, 2011;21(1):55-61. DOI: 10.4014/jmb.1006.06045.

27. Youssef M. A., Yousef A. F., Ali M. M., Ahmed A. I., Lamlom S. F., Strobel W. R., Kalaji H. M. Exogenously applied nitrogenous fertilizers and eff ective microorganisms improve plant growth of stevia (Stevia rebaudiana Bertoni) and soil fertility, AMB Express. 2021;11(1):133. DOI: 10.1186/s13568-021-01292-8.

28. Devi R. P., Yamunasri P., Balachandar D., Murugananthi D. Potentials of Soil Yeasts for Plant Growth and Soil Health in Agriculture: A Review, Journal Pure Applied Microbiology. 2025;19(1):1-18. DOI: 10.22207/JPAM.19.1.10.

29. Xin G., Glawe D., Doty S. L. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees, Mycology Research. 2009;113(9):973-980. DOI: 10.1016/j.mycres.2009.06.001.

30. Laten H. M., Zahareas-Doktor S. Presence and source of free isopentenyladenosine in yeasts, Proceedings of the National Academy of Sciences of the USA. 1985;82(4):1113-1115. DOI: 10.1073/pnas.82.4.111.

31. Chernov A. V. The eff ect of the Baikal EM1 preparation on the yield of vegetable crops and fertility indicators of gray forest soils of Chuvashia: a avtoref. dis. … kand. sel’hoz. nauk: 06.01.04. A. V. CHernov; Saratovskij GAU imeni N. I. Vavilova. Saratov, 2008. 20 s. (in Russ.).

32. Wei X., Xie B., Wan C., Song R., Zhong W., Xin S., Song, K. Enhancing Soil Health and Plant Growth through Microbial Fertilizers: Mechanisms, Benefi ts, and Sustainable Agricultural Practices, Agronomy. 2024; 14: 609. DOI: 10.3390/agronomy14030609.

33. Li X., Kang X., Zou J., Yin J., Wang Y., Li A., Ma X. Li X., Kang X., Zou J., Yin J., Wang Y., Li A., Ma X. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L. – mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils, Ecotoxicol. Environ. Saf. 2023;249:114461. DOI: 10.1016/j.ecoenv.2022.114461.

34. Kurmanbayev A. A., Sundet T. R. Soil health concept and modern soil health indicators, Pochvovedenie i agrohimiya. 2023,2:91- 106. DOI: 10.51886/1999-740X_2023_2_91. (in Russ.).

35. Raman J., Kim J. S., Choi K. R., Eun H., Yang D., Ko Y. J., Kim S. J. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations, International Journal of Molecular Sciences. 2022; 23(14):7784. DOI: 10.3390/ijms23147784.


Review

For citations:


Kuzin A.I., Karpukhina S.A., Nazarov V.N., Shmakova A.A. Effect of a microorganism consortium-based fertilizer on the nutrition regime and yield of apple trees in an intensive orchard. Horticulture and viticulture. 2025;(5):14-22. (In Russ.) https://doi.org/10.31676/0235-2591-2025-5-14-22

Views: 16


ISSN 0235-2591 (Print)
ISSN 2618-9003 (Online)