Preview

Horticulture and viticulture

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The use of iPBS markers to study the genetic diversity of known stock grape varieties

https://doi.org/10.31676/0235-2591-2020-5-11-17

Abstract

The expansion of viticulture in the world is accompanied by the spread of diseases and plant pests. Phylloxera is one of those organisms causing enormous damage to the world’s viticulture. The discovery of the possibility of grafting varieties on stock has led to the development of the breeding of stock originating from North America. Currently, the active use of different types of molecular markers for the identification and study of the genetic diversity of grapes allows to more accurately and efficiently study the biological peculiarities and genetics of plants. Obtaining good reproducibility of the analysis results and revealing the polymorphism between varieties and clones when using different types of markers, you can further use this knowledge for breeding in the selection of crossed pairs. The aim of the study in the present article was to study the common stock grape varieties - hybrids of American species. The article presents a study of the five most famous stock grape varieties: Kober 5BB and 420-A, Paulsen 1103, 101-14 and Richter 57 to identify genetic relationships and polymorphism between samples, based on the use of IRAP and iPBS primers. We used thirteen selected DNA markers that generated a total of 308 polymorphic DNA bands with 54.95 % polymorphism. The effectiveness of iPBS markers was comparable or even more effective than the markers based on retrotransposons. As a result of research, differences and commonality between stocks were clearly demonstrated by both cluster analysis and PCoA analysis.

About the Authors

D. S. Savenkova
I. T. Trubilin Kuban State Agrarian University
Russian Federation

student, 

13, Kalinin str., Krasnodar, 354004



V. O. Mindiarova
I. T. Trubilin Kuban State Agrarian University
Russian Federation

student, 

13, Kalinin str., Krasnodar, 354004



Yu. O. Filippova
I. T. Trubilin Kuban State Agrarian University
Russian Federation

student, 

13, Kalinin str., Krasnodar, 354004



S. A. Volkova
I. T. Trubilin Kuban State Agrarian University
Russian Federation

PhD (Biol.) Associate Professor,

13, Kalinin str., Krasnodar, 354004



A. V. Мilovanov
ФГБОУ ВО «Кубанский государственный аграрный университет им И.Т. Трубилина»
Russian Federation

PhD (Biol.), Senior Lecturer,

13, Kalinin str., Krasnodar, 354004



L. P. Troshin
I. T. Trubilin Kuban State Agrarian University
Russian Federation

Dr. Sci. (Biol.), professor, 

13, Kalinin str., Krasnodar, 354004



References

1. Salinari F., Giosué S., Tubiello F. N., Rettori A., Rossi A., Spanna F., Rosenzweig C., Gullino M. L. Downey mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biology. 2006;12:1299-1307.

2. Williamson B., Tudzynski B., Tudzynski P., van Kan J. A. L. Botrytis cinerea: the cause of grey mould disease. Molecular plant pathology, 2007;8(5):561-580.

3. Calonnec A., Cartolaro P., Poupot C., Dubourdieu D., Darriet A. Eff ects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant pathology, 2004;53(4):434-445.

4. Bournier A. Grape insects. Annual Review of Entomology, 1977;22(1):355-376.

5. Karban R., English-Loeb G., Hougen-Eitzman D. Mite vaccinations for sustainable management of spider mites in vineyards. Ecological Applications, 1997;7(1):183-193.

6. Loeb G., Flaherty D., Wilson L., Barnett W., Leavitt G., Settle W. Pest management aff ects spider mites in vineyards. California Agriculture, 1986;40(3):28-30.

7. Blaise P., Dietrich R., Jermini M. Coupling a disease epidemic model with a crop growth model to simulate yield losses of grapevine due to Plasmopara viticola. IV International Symposium on Computer Modelling in Fruit Research and Orchard Management 416. 1995: p. 285-292.

8. Jermini M. et al. Quantitative eff ect of leaf damage caused by downy mildew (Plasmopara viticola) on growth and yield quality of grapevine ‘Merlot’ (Vitis vinifera). Vitis, 2010;49(2):77-85.

9. Hill G. N., Beresford R. M., Evans K. J. Tools for accurate assessment of botrytis bunch rot (Botrytis cinerea) on wine grapes. New Zealand Plant Protection, 2010;63:174-181.

10. Downie D., Granett J. A life cycle variation in grape phylloxera Daktulosphaira vitifoliae (Fitch). Southwestern Entomologist, 1998;23(1):11-16.

11. Granett J., Walker M. A., Kocsis L., Omer A. D. Biology and management of grape phylloxera. Annual review of entomology, 2001;46(1):387-412.

12. Raspi A., Antonelli R. Grape phylloxera (Viteus vitifoliae (Fitch) infestation on American vine. Integrated Pest Control in Viticulture, 1987;10104:157.

13. Wapshere A. J., Helm K. F. Phylloxera and Vitis: an experimentally testable coevolutionary hypothesis. American journal of enology and viticulture, 1987;38(3):216-222.

14. Powell K. et al. Phylloxera: Rootstock tolerance and resistance to diff erent genetic strains of phylloxera. Wine & Viticulture Journal, 2015;30(5):48.

15. Korosi G. A. et al. New hybrid rootstock resistance screening for phylloxera under laboratory conditions. V International Phylloxera Symposium 904. 2010: p. 53-58.

16. Zarmaev A. A. Some aspects of solving the phylloxera problem. Vestnik akademii nauk Chechenskoy respubliki, 2013;1(18):39-43. (In Russ.)

17. Reisenzein H. Investigations on the occurrence of grape phylloxera (Viteus vitifoliae) in Austrian viticulture. Symposium Proceedings, 2005;81:279-280.

18. Hałaj R., Osiadacz B., Strażyński P., Klejdysz T. Viteus vitifoliae (Fitch, 1885) a new species of aphid in Poland (Hemiptera: Aphidomorpha: Phylloxeridae). Polish Journal of Entomology, 2011;80(3):457-464.

19. Powell K. S. Grape phylloxera: an overview. Root feeders: an ecosystem perspective. CAB International, Wallingford. 2008: p. 96-114.

20. Maltabar L. M., Melnik N. I. Productivity and efficiency of stock varieties and scion/stock combinations. A collection of technologies for the production of elite planting material and grape products, selection of the best protoclones of grapes (recommendations for viticulture farms in the Krasnodar Territory. Ed. L. P. Troshin. Krasnodar, 2005: p. 15-49. (In Russ.)

21. Grzegorczyk W., Walker M. A. Evaluating resistance to grape phylloxera in Vitis species with an in vitro dual culture assay. American journal of enology and viticulture, 1998;49(1):17-22.

22. King P. D., Meekings J. S., Smith S. M. Studies of the resistance of grapes (Vitis spp.) to phylloxera (Daktulosphaira vitifoliae). New Zealand Journal of Experimental Agriculture, 1982;10(3):337-344.

23. Schmid J., Sopp E., Rühl E. H. Breeding rootstock varieties with complete Phylloxera resistance. International Symposium on the Importance of Varieties and Clones in the production of Quality Wine 473. 1997: p. 131-138.

24. Astarkhanova T. S., Musaev I. A., Astarkhanov I. R. The system of suppression of grape phylloxera. Zashchita i karantin rasteniy, 2006;4:56-57. (In Russ.)

25. Zhukov A. I., Nikulushkina G. E., Mikhailovsky S. S. Prospective varieties of grape rootstocks selection and AZOSViV. 2011. (In Russ.)

26. Dokuchaeva E. N. Grape varieties. Kiev: Urozhai, 1986, 270 p. (In Rus.)

27. Studennikova N. L., Rachinskaya A. I., Kotolovets Z. V. Adaptation and agrobiological peculiarities of new stock grape varieties in the steppe zone of Crimea. Magarach. Vinogradarstvo i vinodelie, 2012; 4: 11-13. (In Russ.)

28. Zhukov A. I., Mikhailovsky S. S. Varieties and formations of grape rootstocks of the Anapa zonal experimental station of viticulture and winemaking. Plodovodstvo i vinogradarstvo Iuga Rossii. 2015;32:57-67. (In Russ.)

29. The program of the North Caucasus Center for the breeding of fruit, berry, flower and ornamental crops and grapes for the period until 2030. Ed. Egorov E.A. Krasnodar: SKZNIISiV, 2013, 202 p. (In Russ.)

30. Ilnitskaya E. T., Petrov V. S., Nudga T. A., Larkina M. D., Nikulushkina G. E. Improvement of assortment and methods of breeding of grapes for unstable climatic conditions in the south of Russia. Vinodelie i vinogradarstvo, 2016;4:36-41. (In Russ.)

31. Lodhi M. A., Ye G. N., Weeden N. F., Reisch B. I. A simple and efficient method for DNA extraction from grape vine cultivars and Vitis species. Plant Molecular Biology Reporter, 1994;12(1):6-13.

32. Kalendar R., Antonius K., Smýkal, P., Schulman, A.H. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 2010;121(8):1419-1430.

33. D‘Onofrio C., Lorenzis G., Giordani T., Natali L., Cavallini A., Scalabrelli G. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genetics & Genomes, 2010;6(3):451-466.

34. Peakall R. O. D., Smouse P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes, 2006;6(1):288-295.

35. Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 2016;33(7):1870-1874.

36. Costa M. O., Capel L. S., Maldonado C., Mora F., Mangolin C. A., Machado M. D. High genetic diff erentiation of grapevine rootstock varieties determined by molecular markers and artificial neural networks. Acta Scientiarum, Agronomy, 2020;42.


Review

For citations:


Savenkova D.S., Mindiarova V.O., Filippova Yu.O., Volkova S.A., Мilovanov A.V., Troshin L.P. The use of iPBS markers to study the genetic diversity of known stock grape varieties. Horticulture and viticulture. 2020;(5):11-17. (In Russ.) https://doi.org/10.31676/0235-2591-2020-5-11-17

Views: 619


ISSN 0235-2591 (Print)
ISSN 2618-9003 (Online)