

The use of iPBS markers to study the genetic diversity of known stock grape varieties
https://doi.org/10.31676/0235-2591-2020-5-11-17
Abstract
About the Authors
D. S. SavenkovaRussian Federation
student,
13, Kalinin str., Krasnodar, 354004
V. O. Mindiarova
Russian Federation
student,
13, Kalinin str., Krasnodar, 354004
Yu. O. Filippova
Russian Federation
student,
13, Kalinin str., Krasnodar, 354004
S. A. Volkova
Russian Federation
PhD (Biol.) Associate Professor,
13, Kalinin str., Krasnodar, 354004
A. V. Мilovanov
Russian Federation
PhD (Biol.), Senior Lecturer,
13, Kalinin str., Krasnodar, 354004
L. P. Troshin
Russian Federation
Dr. Sci. (Biol.), professor,
13, Kalinin str., Krasnodar, 354004
References
1. Salinari F., Giosué S., Tubiello F. N., Rettori A., Rossi A., Spanna F., Rosenzweig C., Gullino M. L. Downey mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biology. 2006;12:1299-1307.
2. Williamson B., Tudzynski B., Tudzynski P., van Kan J. A. L. Botrytis cinerea: the cause of grey mould disease. Molecular plant pathology, 2007;8(5):561-580.
3. Calonnec A., Cartolaro P., Poupot C., Dubourdieu D., Darriet A. Eff ects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant pathology, 2004;53(4):434-445.
4. Bournier A. Grape insects. Annual Review of Entomology, 1977;22(1):355-376.
5. Karban R., English-Loeb G., Hougen-Eitzman D. Mite vaccinations for sustainable management of spider mites in vineyards. Ecological Applications, 1997;7(1):183-193.
6. Loeb G., Flaherty D., Wilson L., Barnett W., Leavitt G., Settle W. Pest management aff ects spider mites in vineyards. California Agriculture, 1986;40(3):28-30.
7. Blaise P., Dietrich R., Jermini M. Coupling a disease epidemic model with a crop growth model to simulate yield losses of grapevine due to Plasmopara viticola. IV International Symposium on Computer Modelling in Fruit Research and Orchard Management 416. 1995: p. 285-292.
8. Jermini M. et al. Quantitative eff ect of leaf damage caused by downy mildew (Plasmopara viticola) on growth and yield quality of grapevine ‘Merlot’ (Vitis vinifera). Vitis, 2010;49(2):77-85.
9. Hill G. N., Beresford R. M., Evans K. J. Tools for accurate assessment of botrytis bunch rot (Botrytis cinerea) on wine grapes. New Zealand Plant Protection, 2010;63:174-181.
10. Downie D., Granett J. A life cycle variation in grape phylloxera Daktulosphaira vitifoliae (Fitch). Southwestern Entomologist, 1998;23(1):11-16.
11. Granett J., Walker M. A., Kocsis L., Omer A. D. Biology and management of grape phylloxera. Annual review of entomology, 2001;46(1):387-412.
12. Raspi A., Antonelli R. Grape phylloxera (Viteus vitifoliae (Fitch) infestation on American vine. Integrated Pest Control in Viticulture, 1987;10104:157.
13. Wapshere A. J., Helm K. F. Phylloxera and Vitis: an experimentally testable coevolutionary hypothesis. American journal of enology and viticulture, 1987;38(3):216-222.
14. Powell K. et al. Phylloxera: Rootstock tolerance and resistance to diff erent genetic strains of phylloxera. Wine & Viticulture Journal, 2015;30(5):48.
15. Korosi G. A. et al. New hybrid rootstock resistance screening for phylloxera under laboratory conditions. V International Phylloxera Symposium 904. 2010: p. 53-58.
16. Zarmaev A. A. Some aspects of solving the phylloxera problem. Vestnik akademii nauk Chechenskoy respubliki, 2013;1(18):39-43. (In Russ.)
17. Reisenzein H. Investigations on the occurrence of grape phylloxera (Viteus vitifoliae) in Austrian viticulture. Symposium Proceedings, 2005;81:279-280.
18. Hałaj R., Osiadacz B., Strażyński P., Klejdysz T. Viteus vitifoliae (Fitch, 1885) a new species of aphid in Poland (Hemiptera: Aphidomorpha: Phylloxeridae). Polish Journal of Entomology, 2011;80(3):457-464.
19. Powell K. S. Grape phylloxera: an overview. Root feeders: an ecosystem perspective. CAB International, Wallingford. 2008: p. 96-114.
20. Maltabar L. M., Melnik N. I. Productivity and efficiency of stock varieties and scion/stock combinations. A collection of technologies for the production of elite planting material and grape products, selection of the best protoclones of grapes (recommendations for viticulture farms in the Krasnodar Territory. Ed. L. P. Troshin. Krasnodar, 2005: p. 15-49. (In Russ.)
21. Grzegorczyk W., Walker M. A. Evaluating resistance to grape phylloxera in Vitis species with an in vitro dual culture assay. American journal of enology and viticulture, 1998;49(1):17-22.
22. King P. D., Meekings J. S., Smith S. M. Studies of the resistance of grapes (Vitis spp.) to phylloxera (Daktulosphaira vitifoliae). New Zealand Journal of Experimental Agriculture, 1982;10(3):337-344.
23. Schmid J., Sopp E., Rühl E. H. Breeding rootstock varieties with complete Phylloxera resistance. International Symposium on the Importance of Varieties and Clones in the production of Quality Wine 473. 1997: p. 131-138.
24. Astarkhanova T. S., Musaev I. A., Astarkhanov I. R. The system of suppression of grape phylloxera. Zashchita i karantin rasteniy, 2006;4:56-57. (In Russ.)
25. Zhukov A. I., Nikulushkina G. E., Mikhailovsky S. S. Prospective varieties of grape rootstocks selection and AZOSViV. 2011. (In Russ.)
26. Dokuchaeva E. N. Grape varieties. Kiev: Urozhai, 1986, 270 p. (In Rus.)
27. Studennikova N. L., Rachinskaya A. I., Kotolovets Z. V. Adaptation and agrobiological peculiarities of new stock grape varieties in the steppe zone of Crimea. Magarach. Vinogradarstvo i vinodelie, 2012; 4: 11-13. (In Russ.)
28. Zhukov A. I., Mikhailovsky S. S. Varieties and formations of grape rootstocks of the Anapa zonal experimental station of viticulture and winemaking. Plodovodstvo i vinogradarstvo Iuga Rossii. 2015;32:57-67. (In Russ.)
29. The program of the North Caucasus Center for the breeding of fruit, berry, flower and ornamental crops and grapes for the period until 2030. Ed. Egorov E.A. Krasnodar: SKZNIISiV, 2013, 202 p. (In Russ.)
30. Ilnitskaya E. T., Petrov V. S., Nudga T. A., Larkina M. D., Nikulushkina G. E. Improvement of assortment and methods of breeding of grapes for unstable climatic conditions in the south of Russia. Vinodelie i vinogradarstvo, 2016;4:36-41. (In Russ.)
31. Lodhi M. A., Ye G. N., Weeden N. F., Reisch B. I. A simple and efficient method for DNA extraction from grape vine cultivars and Vitis species. Plant Molecular Biology Reporter, 1994;12(1):6-13.
32. Kalendar R., Antonius K., Smýkal, P., Schulman, A.H. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 2010;121(8):1419-1430.
33. D‘Onofrio C., Lorenzis G., Giordani T., Natali L., Cavallini A., Scalabrelli G. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genetics & Genomes, 2010;6(3):451-466.
34. Peakall R. O. D., Smouse P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes, 2006;6(1):288-295.
35. Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 2016;33(7):1870-1874.
36. Costa M. O., Capel L. S., Maldonado C., Mora F., Mangolin C. A., Machado M. D. High genetic diff erentiation of grapevine rootstock varieties determined by molecular markers and artificial neural networks. Acta Scientiarum, Agronomy, 2020;42.
Review
For citations:
Savenkova D.S., Mindiarova V.O., Filippova Yu.O., Volkova S.A., Мilovanov A.V., Troshin L.P. The use of iPBS markers to study the genetic diversity of known stock grape varieties. Horticulture and viticulture. 2020;(5):11-17. (In Russ.) https://doi.org/10.31676/0235-2591-2020-5-11-17