Preview

Horticulture and viticulture

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Sensitivity of Venturia inaequalis to fl uxapyroxad (Serkadis) in industrial plantations in the South of Russia

https://doi.org/10.31676/0235-2591-2023-4-48-53

Abstract

 Th e apple scab pathogen <i>Venturia inaequalis</i> is claimed to be the most commonly encountered pathogen of apple orchards in temperate climates. Traditional orchard protection based on repeated application of fungicides remains relevant. Widespread use of fungicides with narrowly focused action leads to a gradual selection of resistant pathogen biotypes, an increase in their share in the population and, subsequently, to a loss of eff ectiveness of chemicals. Monitoring the pathogen sensitivity to fungicides, including new ones that have appeared on the pesticide market relatively recently, such as succinate dehydrogenase inhibitors (SDHI), constitutes an important aspect in the development of an anti-resistance orchard protection program. Th e present paper evaluates the sensitivity of the fungus to fl uxapyroxad using in vitro discriminatory concentration based on relative growth (RG) of mycelium on solid medium. Monospore isolates of the pathogen were grown on potato glucose agar with and without 0.25 μg/mL of fl uxapyroxad. Th e study involved a total of 106 isolates of the pathogen collected from two industrial appl e orchards. Th e mean RG values of these populations differed signifi cantly. Th e orchards with a history of active ingredient application demonstrated the presence of isolates with RG of mycelium above 70 and 80%, thereby indicating the development of resistance in them. In one of the orchards, the proportion of isolates at a discriminatory threshold of RG > 80 % was twice as high as in the other one. SDHI fungicides and in particular fl uxapyroxad refer to narrowly acting fungicides, which makes <i>Venturia inaequalis</i> highly probable to develop resistance to them. Th e present study is apparently the fi rst in Russia to demonstrate the presence of pathogen forms wit h reduced sensitivity to this active ingredient. Compliance with anti-resistant FRAC recommendations when using single-site fungicides and constant monitoring of the pathogen sensitivity to them form an important condition for their long-term use.

About the Authors

A. I. Nasonov
North Caucasian Federal Scientifi c Center of Horticulture
Russian Federation

Candidate of Biological Sciences, Head of the Laboratory of Biotechnological Control of Phytopathogens and Phytophage



G. V. Yakuba
North Caucasian Federal Scientifi c Center of Horticulture
Russian Federation

Candidate of Biological Sciences, Senior Research-
er, Laboratory of Biotechnological Control of Phytopathogens and Phytophages



N. A. Marchenko
North Caucasian Federal Scientifi c Center of Horticulture
Russian Federation

Junior Researcher, Laboratory of Biotechnological Control of Phytopathogens and Phytophages



I. L. Astapchuk
North Caucasian Federal Scientifi c Center of Horticulture
Russian Federation

Candidate of Biological Sciences, Researcher, Laboratory of Biotechnological Control of Phytopathogens and Phytophages



References

1. Nasonov A. I., Suprun I. I. Apple scab: features of the pathogen and pathogenesis. Mycology and phytopathology. 2015;49(5):275285. (in Russ)

2. MacHardy W. E. Apple Scab: Biology, Epidemiology, and Management. St Paul: MN, USA: American Phytopathological Society, 1996, 570 р.

3. Gur L., Levy K., Farber A., Frenkel O., Reuveni M. Delayed Development of Resistance to QoI Fungicide in Venturia inaequalis in Israeli Apple Orchards and Improved Apple Scab Management Using Fungicide Mixtures. Agronomy. 2021;11(2):396. https://doi.org/10.3390/agronomy11020396

4. Jaklova P., Kloutvorova J., Cmejla R. A real-time PCR quantitative analysis of the Venturia inaequalis cytb gene G143A mutation and its prevalence in the Czech Republic. Eur J Hortic Sci. 2020;85(3):169-175. https://doi.org/10.17660/eJHS.2020/85.3.4

5. Frederick Z. A., Villani S. M., Cooley D. R., Biggs A. R., Raes J. J., Cox K. D. Prevalence and stability of qualitative QoI resistance in populations of Venturia inaequalis in the northeastern United States. Plant Dis. 2014;98:1122-1130. DOI: 10.1094/PDIS-10-13-1042-RE

6. Nasonov A. I., Yakuba G. V., Lobodina E. V. Long-term persistence of carbendazim resistance in Venturia inaequalis in Krasnodar Krai (Russia). Mycology and phytopathology. 2022;56(5):374-378. (in Russ)

7. Nasonov A. I., Yakuba G. V., Ostapchuk I. L. Sensitivity of the Krasnodar population of Venturia inaequalis to diphenoconazole, an inhibitor of sterol demethylation. Mycology and phytopathology. 2021;55(4):297-308. (in Russ)

8. Sierotzki H. Scalliet G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology. 2013;103:880-887. https://doi.org/10.1094/PHYTO-01-13-0009-RVW

9. Toff olatti S. L., Venturini G., Bianco P. A. First report of SDHI resistant strains of Venturia inaequalis from commercial orchards in Northern Italy. Plant Disease. 2016;100(11):2324. https://doi.org/10.1094/PDIS-03-16-0361-PDN

10. Hu M-J., Fernández-Ortuño D., Schnabel G. Monitoring Resistance to SDHI Fungicides in Botrytis cinerea from Strawberry Fields. Plant Dis. 2016;100:959-965. https://doi.org/10.1094/PDIS-10-15-1210-RE

11. Fernández-Ortuño D., Pérez-García A., Chamorro M., de la Peña E., de Vicente A., Torés J. A. Resistance to the SDHI Fungicides Boscalid. Fluopyram. Fluxapyroxad. and Penthiopyrad in Botrytis cinerea from Commercial Strawberry Fields in Spain. Plant Dis. 2017;101:1306-1313. https://doi.org/10.1094/PDIS-0117-0067-RE

12. Mallik I., Arabiat S., Pasche J. S., Bolton M. D., Patel J. S., Gudmestad N. C. Molecular characterization and detection of mutations associated with resistance to succinate dehydrogenase-inhibiting fungicides in Alternaria solani. Phytopathology. 2014;104:40-49. https://doi.org/10.1094/PHYTO-02-13-0041-R

13. Wang Y., Duan Y., Wang J., Zhou M. Mol. A new point mutation in the iron–sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum. Plant Pathol. 2015;16:653-661. https://doi.org/10.1111/mpp.12222

14. Fiaccadori R., Battistini G. Biological Methodologies on SDHI Fungicides to Assess Reductions of Sensitivity and Activity on Venturia inaequalis and Cross-Resistance Tests. American Journal of Plant Sciences. 2021;12(7):1124-1134. DOI: 10.4236/ajps.2021.127078

15. Villani S. M., Ayer K., Cox K. D. Molecular characterization of the sdhB gene and baseline sensitivity to penthiopyrad, fl uopyram, and benzovindifl upyr in Venturia inaequalis. Plant Disease. 2016;100(8):1709-1716. https://doi.org/10.1094/PDIS12-15-1512-RE

16. Ayer K., Villani S. M., Choi M. W., Cox K. Characterization of the VisdhC and VisdhD genes in Venturia inaequalis. and sensitivity to fl uxapyroxad, pydifl umetofen, inpyrfl uxam and benzovindifl upyr. Plant Dis. 2019;103:1092-1100. https://doi.org/10.1094/PDIS-07-18-1225-RE

17. Ayer K. M., Choi M. W., Smart S. T., Moff ett A. E., Cox K. D. Th e Eff ects of Succinate Dehydrogenase Inhibitor Fungicide Dose and Mixture on Development of Resistance in Venturia inaequalis. Applied and Environmental Microbiology. 2020;86(17):e01196-20. https://aem.asm.org/content/aem/86/17/e01196-20.full.pdf

18. Köller W., Parker D. M., Turechek W. W., Avila-Adame C., Cronshaw K. A Two-Phase Resistance Response of Venturia inaequalis Populations to the QoI Fungicides Kresoxim-Methyl and Trifl oxystrobin. Plant Dis. 2004;88:537-544. https://doi.org/10.1094/PDIS.2004.88.5.537

19. Nasonov A. I. A new method of obtaining Venturia inaequalis culture from ascospores. Mycology and phytopathology. 2019;53(1):46-48. (in Rus.)

20. Internet resource Statskingdom». URL. https://www.statskingdom.com/320ShapiroWilk.html.

21. Statistical online calculator: SciStatCalc: Two-sample Kolmogorov-Smirnov Test Calculator. URL https://scistatcalc. blogspot.com/2013/11/kolmogorov-smirnov-test-calculator.html

22. Mondino P., Casanova L., Celio A., Bentancur O., Leoni C., Alaniz S. Sensitivity of Venturia inaequalis to Trifl oxystrobin and Difenoconazole in Uruguay. Journal of Phytopathology. 2015;163. (1) 1-10. https://doi.org/10.1111/jph.12274

23. Köller W., Wilcox W. F., Barnard J., Jones A. L., Braun P. G. Detection and Quantifi cation of Resistance of Venturia inaequalis Populations to Sterol Demethylation Inhibitors. Phytopathology. 1997;87:184-190. https://doi.org/10.1094/PHYTO.1997.87.2.184

24. Pfeufer E. E., Ngugi H. K. Orchard factors associated with resistance and cross resistance to sterol demethylation inhibitor fungicides in populations of Venturia inaequalis from Pennsylvania. Phytopathology. 2012;102(3):272–282. https://doi.org/10.1094/PHYTO-04-11-0117


Review

For citations:


Nasonov A.I., Yakuba G.V., Marchenko N.A., Astapchuk I.L. Sensitivity of Venturia inaequalis to fl uxapyroxad (Serkadis) in industrial plantations in the South of Russia. Horticulture and viticulture. 2023;(4):48-53. (In Russ.) https://doi.org/10.31676/0235-2591-2023-4-48-53

Views: 285


ISSN 0235-2591 (Print)
ISSN 2618-9003 (Online)