Preview

Horticulture and viticulture

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Statistical morphometric analysis of grape leaves of varieties of the Kazakhstan, Asian and European breeding

https://doi.org/10.18454/VSTISP.2016.6.3910

Abstract

Until now ampelographic description of grape varieties is regarded as primary characteristic. Using phillometric indicators, it is possible to discriminate many varieties. On the basis of the digitized scanned images the statistical analysis of 30 characteristics of the grape leaves of 94 Kazakhstan, Asian and European varieties was showed a correlation of number of phyllometric parameters. Based on the characteristics of all the samples a “mean leaf” shape was obtained. Analysis of metric indexes of the leaf blade was showed that namely the parameters of external configuration of leaves largely determine the variability of shapes and facilitate to the identification and systematization of the varietal material. Procrustes analysis with 17 markers allowed us to obtain the form of the “main leaf” for each Kazakhstan variety. Using the coefficients of Riemannian distances between shapes of the leaf blade the dendrogram of grape varieties of Kazakhstan breeding was constructed, as well as of all the analyzed varieties of different origin.

About the Authors

A. S. Pozharskiy
Institute of Plant Biology and Biotechnology
Russian Federation


N. A. Ryabushkina
Institute of Plant Biology and Biotechnology
Russian Federation


S. Z. Kazibaeva
Institute of Horticulture and Viticulture
Russian Federation


References

1. Galet P. Precis d’Ampelographie Pratique. Impr. P. Dehan. - Montpellier. - 1952. - 256 pp.

2. Second edition of the OIV descriptor list for grape varieties and Vitis species. Organisation Internationale de la Vigne et du Vin. - Paris, France. - International Plant Genetic Resources Institute: Rome. - 178 p.

3. Preiner D., Safner T., Karoglan Kontić J., Marković Z., Šimon S., Maletić E. Analysis of phyllometric parameters efficiency in discrimination of Croatian native V. vinifera cultivars // Vitis. - Vol. 53. - 2014. - P. 215-217.

4. Alba V., Bergamini C., Genghi R., Gasparro M., Perniola R., Antonacci D. Ampelometric Leaf Trait and SSR Loci Selection for a Multivariate Statistical Approach in Vitis vinifera L. Biodiversity Management // Mol Biotechnol., 2015. - Vol. 57. - P. 709-719.

5. Chitwood D. H., Ranjan A., Martinez C. C., Headland L. R., Thiem Th., Kumar R., Covington M. F., Hatcher T., Naylor D. T., Zimmerman Sh., Downs N., Raymundo N., Buckler E. S., Maloof J. N., Aradhya M., Prins B., Li L., Myles S., Sinha N. R. A Modern Ampelography: A Genetic Basis for Leaf Shape and Venation Patterning in Grape // Plant Physiology, 2014. - Vol. 164. - P. 259-272.

6. Soldavini C., Schneider A. SuperAmpelo, a Software for Ampelometric and Ampelographic Descriptions in Vitis // ISHS. Proc. IX th Intl. Conf. on Grape Genetics and Breeding Eds.: E. Peterlunger et al. // Acta Hort., 2009. - No. 827. - P. 253-258.

7. Луценко Е. В., Бандык Е. К., Трошин Л. П. Решение задач ампелографии с применением АСК- анализа изображений листьев по их внешним контурам (обобщение, абстрагирование, классификация и идентификация) // Научный журн. КубГАУ, 2015, № 112(08). - 49 с.

8. Bodor P., Baranyai L., Bálo B., Tóth E., Strever A., Hunter J. J., Bisztray G. D. GRA.LE.D. (GRApe-vine LEaf Digitalization) software for the detection and graphic reconstruction of ampelometric differences between Vitis leaves // S. Afr. J. Enol. Vitic., 2012. - Vol. 33. - P. 1-6.

9. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. - Vienna, Austria.

10. Weihs C., Ligges U., Luebke K. and Raabe N. klaR Analyzing German Business Cycles. In Baier, D., Decker, R. and Schmidt-Thieme, L. (eds.). Data Analysis and Decision Support. Springer-Verlag: Berlin, 2005. - P. 335-343.

11. Dryden I. L. (2016). Shapes package. R Foundation for Statistical Computing, Vienna, Austria. Contributed package. Version 1.1-13. URL http://www.R-project.org.

12. Adams D. C. and Otarola-Castillo E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data // Methods in Ecology and Evolution, 2013. - Vol. 4. - P. 393-399.

13. Taiyun Wei corrplot: Visualization of a correlation matrix. - R package version 2.0.3. - 2013.

14. Paradis E., Claude J., Strimmer K. APE: analyses of phylogenetics and evolution in R language // Bioinformatics, 2004. - Vol. 20. - P. 289-290.

15. Mardia K. V., Kent J. T. and Bibby J. M. Multivariate analysis // Academic Press: New York; London, 1979. - 519 p.

16. Dryden I. L. and Mardia K. V. Statistical Shape Analysis. - Wiley: Chichester, 1998. - 376 p.

17. Kendall D. G. Shape manifolds, Procrustean metrics and complex projective spaces // Bulletin of the London Mathematical Society,1984. - Vol. 16. - P. 81-121.


Review

For citations:


Pozharskiy A.S., Ryabushkina N.A., Kazibaeva S.Z. Statistical morphometric analysis of grape leaves of varieties of the Kazakhstan, Asian and European breeding. Horticulture and viticulture. 2016;(6):12-16. (In Russ.) https://doi.org/10.18454/VSTISP.2016.6.3910

Views: 548


ISSN 0235-2591 (Print)
ISSN 2618-9003 (Online)