Preview

Horticulture and viticulture

Advanced search
Open Access Open Access  Restricted Access Subscription Access

In vitro screening for the antagonistic activity of yeast strains against the apple scab pathogen Venturia inaequalis (Cooke) G. Winter

https://doi.org/10.31676/0235-2591-2025-4-34-41

Abstract

Apple scab (caused by Venturia inaequalis (Cooke) G. Winter) is one of the most harmful diseases of this crop. Therefore, when cultivating susceptible cultivars, it is necessary to implement a set of protective measures based on fungicide use. This increases the cost of the output and reduces the environmental friendliness of production. Consequently, alternative control methods are currently being sought. One such promising approach involves utilizing biological agents which have an antagonistic effect on the scab pathogen. The article examines the prospects of using yeast as a biological agent to suppress the scab pathogen. The study aims to evaluate the antagonistic activity of yeast strains against the pathogen V. inaequalis under microbiological culture conditions. The research objects were yeast strains of the Saccharomyces cerevisiae species and the non-Saccharomyces genera. A total of 34 isolates was obtained from the surface of grape berries selected in the vineyards of Krasnodar Krai. Another object was an apple scab strain isolated from scab-affected leaves. The antagonistic activity of yeast was evaluated using the dual culture technique on an agarized peptone-yeast medium. As a result, the research identified the antagonistic effects of several studied yeast strains on the scab pathogen. The colony diameter of the pathogen culture ranged from 19.0 (nS23) to 29.3 mm (S1, S8) depending on the antagonistic activity of the yeast strains. In the controls, this figure equaled 35.6 mm. Taking into account the average values, the non-Saccharomyces genera strains had a stronger antagonistic effect on V. inaequalis, unlike the Saccharomyces cerevisiae strains. The inhibitory activity evaluation enabled the identification of strains nS22, nS23, nS26, nS27 which exhibited inhibitory capacity of 43.8–46.6 %. Subsequent studies of the ability of strains nS22, nS23, nS26, nS27 to suppress V. inaequalis bioactivity under orchard coenosis conditions may further confirm their antagonistic properties. As a result, it will be possible to propose strains for developing biofungicides to combat apple scab.

About the Authors

I. I. Suprun
North Caucasian Federal Scientifi c Center of Horticulture, Viticulture, Wine-making
Russian Federation

Suprun I. I., PhD (Biol.), Head of the Functional Scientific Center «Breeding and Nursery»

st. 40 years of Victory, 39, Krasnodar, 350901



E. V. Lobodina
North Caucasian Federal Scientifi c Center of Horticulture, Viticulture, Wine-making
Russian Federation

Lobodina E. V., PhD (Tech.), Research Associate of Breeding and Biotechnology Laboratory

Krasnodar



References

1. Wenneker M., Thomma B. P. Latent postharvest pathogens of pome fruit and their management: from single measures to a systems intervention approach, European Journal of Plant Pathology. 2020;156:663-681. DOI: 10.1007/s10658-020-01935-9.

2. Konsue W., Dethoup T., Limtong S. Biological Control of Fruit Rot and Anthracnose of Postharvest Mango by Antagonistic Yeasts from Economic Crops Leaves, Microorganisms. 2020;8(3):317. DOI: 10.3390/microorganisms8030317.

3. Freimoser F. M., Rueda-Mejia M. P., Tilocca B., Migheli Q. Biocontrol yeasts: Mechanisms and applications, World Journal of Microbiology and Biotechnology. 2019;35:154. DOI: 10.1007/s11274-019-2728-4.

4. Zhang X., Li B., Zhang Z., Chen Y., Tian S. Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit, Journal of Fungi. 2020;6(3):158. DOI: 10.3390/jof6030158.

5. Díaz M. A., Pereyra M. M., Picón-Montenegro E., et al. Killer Yeasts for the Biological Control of Postharvest Fungal Crop Diseases, Microorganisms. 2020;8(11):1680. DOI: 10.3390/microorganisms8111680.

6. Liu J., Sui Y., Wisniewski M., Droby S., Liu Y. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit, International Journal of Food Microbiology. 2013;167:153-160. DOI: 10.1016/j.ijfoodmicro.2013.09.004.

7. Dukare A. S., Paul S., Nambi V. E. et al. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review, Critical Reviews in Food Science and Nutrition. 2018;59:1498-1513. DOI: 10.1080/10408398.2017.1417235.

8. Spadaro D., Droby S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists, Trends in Food Science & Technology. 2016;47:39-49. DOI: 10.1016/j.tifs.2015.11.003.

9. Amorim-Rodrigues M., Brandão R. L., Cássio F., Lucas C. The yeast Wickerhamomyces anomalus acts as a predator of the olive anthracnose-causing fungi, Colletotrichum nymphaeae, C. godetiae, and C. Gloeosporioides, Frontiers in Fungal Biology. 2024;5:1463860. DOI: 10.3389/ff unb.2024.1463860.

10. Oro L., Feliziani E., Ciania M. et al. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries, International Journal of Food Microbiology. 2018;265:18-22. DOI: 10.1016/j.ijfoodmicro.2017.10.027.

11. Khunnamwong P., Lertwattanasakul N., Jindamorakot S., et al. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases, Folia Microbiologica. 2020;65:573-590. DOI: 10.1007/s12223-019-00764-6.

12. Öztekin S., Karbancioglu-Guler F. Biological control of green mold on mandarin fruit through the c ombined use of antagonistic yeasts, Biological Control. 2023;180:105186. DOI: 10.1016/j.biocontrol.2023.105186.

13. Di Francesco A., Ugolini L., Lazzeri L., Mari M. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens, Biological Control. 2015;81:8-14. DOI: 10.1016/j.biocontrol.2014.10.004.

14. Oro L., Feliziani E., Ciani M., et al. Biocontrol of postharvest brown rot of sweet cherries by Saccharomyces cerevisiae Disva 599, Metschnikowia pulcherrima Disva 267 and Wickerhamomyces anomalus Disva 2 strains, Postharvest Biology and Technology. 2014;96:64-68. DOI: 10.1016/j.postharvbio.2014.05.011.

15. Liu Z., Du S., Ren Y., Liu Y. Biocontrol ability of killer yeasts (Saccharomyces cerevisiae) isolated from wine against Colletotrichum gloeosporioides on grape, Journal of Basic Microbiology. 2017;58(1):60-67. DOI: 10.1002/jobm.201700264.

16. Chen L., Zhao C., Yan T., et al. Antifungal potentiality of non-volatile compounds produced from Hanseniaspora uvarum against postharvest decay of table grape fruit caused by Botrytis cinerea and Penicillium expansum, Postharvest Biology and Technology. 2025;222:113364. DOI: 10.1016/j.postharvbio.2024.113364.

17. Dzhakibaeva G. T., Sadanov A. K., Ismailova E. T. i dr. Evaluation of the inhibitory activity of collection yeast cultures against the causative agent of bacterial burn Erwinia amylovora, Mikrobiologiya i virusologiya. 2023;2(41):173-182. DOI: 10.53729/MV-AS.2023.02.11. (in Russ.).

18. Ebrahimi L., Hatami R. S. and Etebarian H.R. Apple Endophytic fungi and their antagonism against apple scab disease, Frontiers in Microbiology. 2022;13:1024001. DOI: 10.3389/fmicb.2022.1024001.

19. Jimenez M. D., Hernández C. M., Alcalá F. D. et al. Biological eff ectiveness of Bacillus spp. and Trichoderma spp. on apple scab (Venturia inaequalis) in vitro and under fi eld conditions, European Journal of Physical and Agricultural Sciences. 2018;6(11):7-17.

20. Majeed M., Bhat N. A., Badri Z. A., et al. Non- Chemical Management of Apple Scab-A Global Perspective, International Journal of Agriculture Environment & Biotechnology. 2017;2:912-921.

21. Okoro C. A., El-Hasan A., Voegele R. T. Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects, Agrochemicals. 2024;3(2):118-146. DOI: 10.3390/agrochemicals3020010.

22. Suprun I. I., Lobodina E. V., Ageeva N. M., Al’-Nakib E. A. Creation of a collection of autochthonous strains of wine yeast, Plodovodstvo i vinogradarstvo YUga Rossii. 2021;71(5):326-341. DOI: 10.30679/2219-5335-2021-5-71-326-341. (in Russ.).

23. Mondino P., Casanova L., Celio A. et al. Sensitivity of Venturia inaequalis to Trifl oxystrobin and Difenoconazole in Uruguay, Journal of Phytopathology. 2015;163 (1):1-10. DOI: 10.1111/jph.12274.

24. Nasonov A. I., YAkuba G. V., Astapchuk I. L., Stepanov I. V. Sensitivity to ciprodinil of populations of the causative agent of apple scab from Krasnodar orchards in vitro, Plodovodstvo i vinogradarstvo YUga Rossii. 2023;79(1):186-202. DOI: 10.30679/2219-5335-2023-1-79-186-202. (in Russ.).

25. Laboratornyj praktikum po mikrobiologii: ucheb.-metod. kompleks. Minsk: UO «Belorusskij gosudarstvennyj pedagogicheskij universitet imeni Maksima Tanka», 2012. 129 s. (in Russ.).

26. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. URL: https://www.R-project.org.

27. Field A. Discovering Statistics Using IBM SPSS Statistics. Sage, 2013; Los Angeles, London, New Delhi.

28. Yandell B. S. Practical Data Analysis for Designed Experiments. Madras: Chapman and Hall, 1997, 312 p. DOI: 10.1007/978-1-4899-3035-4.

29. Mukherjee A., Verma J. P., Gaurav A. K. et al. Yeast a potential bio-agent: future for plant growth and postharvest disease management for sustainable agriculture, Appl Microbiol Biotechnol. 2020;104:1497-1510. DOI: 10.1007/s00253-019-10321-3.

30. Fiss M., Barckhausen O., Gherbawy Y. et al. Characterization of epiphytic yeasts of apple as potential biocontrol agents against apple scab (Venturia inaequalis), Journal of Plant Diseases and Protection. 2003;513-523. https://www.jstor.org/stable/43215545.


Review

For citations:


Suprun I.I., Lobodina E.V. In vitro screening for the antagonistic activity of yeast strains against the apple scab pathogen Venturia inaequalis (Cooke) G. Winter. Horticulture and viticulture. 2025;(4):34-41. (In Russ.) https://doi.org/10.31676/0235-2591-2025-4-34-41

Views: 15


ISSN 0235-2591 (Print)
ISSN 2618-9003 (Online)