Preview

Садоводство и виноградарство

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Достижения и перспективы биоинженерии садовых культур

https://doi.org/10.31676/0235-2591-2021-6-17-29

Полный текст:

Аннотация

Сегодня биоинженерия, использующая различные технологии модификации генома растений, считается одним из современных биотехнологических направлений создания уникальных и отвечающих современным требованиям генотипов. Цель исследования — провести анализ современного состояния мировых научных достижений при получении модифицированных геномов плодовых и ягодных культур с существенными (отличными от таковых у лучших сортов, полученных без использования биоинженерии) отклонениями нормы реакции по признакам и свойствам устойчивости к биотическим и абиотическим факторам, продуктивности, качества плодов и др. Первые исследования по трансформации садовых культур были направлены на разработку протоколов, включающих использование селектируемого маркерного гена, который кодировал ферменты, детоксифицирующие аминогликозидные антибиотики путем фосфорилирования. Наиболее распространенная система отбора для трансгенных линий плодовых и ягодных культур — использование nptII (неомицинфосфотрансфераза). Для семечковых культур приоритетные направления создания ГМ-линии — устойчивость к парше Venturia inaequalis (Wint.) Cke, ржавчине Gymnosporangium juniper-virginianae Schwein., бактериальному ожогу Erwinia amylovora Burrill, Winslow et al., высокое качество плодов, в том числе яркая окраска и снижение ферментативного побурения. Для косточковых — толерантность к вирусу шарки (PPV), кольцевой пятнистости (PRSV), некротической пятнистости плодов (PNRSV). Для ягодных — устойчивость к грибам Sphaerotheca humuli (DC.) Burrill, возбудителю серой (Botrytis cinerea Pers.) и корневой (Phytophthora cactorum (Lebert & Cohn) J.Schrot.) гнилям, мучнистой росе (Oidium tuckeri Berkeley), высокое качество плодов. Для цитрусовых — устойчивость к бактериальному раку (Xanthomonas citri sub sp.), возбудителю язвы (Xanthomonas axonopodis pv citri), болезни озеленения (Huanglongbing (HLB)) и грибам (Trichoderma harzianum Rifai). Для тропических — устойчивость к вирусу кольцевой пятнистости (PRSV) вирусу полосатости бананов (eBSV). ГМ-линии плодовых, с уникальным фенотипом FT применяются в новой стратегии селекции — «FasTrack». В настоящее время в мире зарегистрированы 9 ГМ-линий плодовых и ягодных культур. Для промышленного потребления в свежем виде и переработки разрешены ГМ-линии яблок Arctic (Golden, Granny, Fuji), сливы (Honey Sweet), папайи (Rainbow, SunUp, Laie Gold). В списке трансгенных культур, зарегистрированных в Российской Федерации, ГМ-линии плодовых и ягодных культур отсутствуют.

Об авторах

А. А. Гузеева
Федеральный научный селекционно-технологический центр садоводства и питомниководства
Россия

младший научный сотрудник, лаборатория репродуктивной биотехнологии

Москва



И. А. Капитова
Федеральный научный селекционно-технологический центр садоводства и питомниководства
Россия

кандидат химических наук, старший научный сотрудник, лаборатория репродуктивной биотехнологии

Москва



С. В. Долгов
Федеральный научный селекционно-технологический центр садоводства и питомниководства; Филиал Института Биоорганической химии им. акад. М. М. Шемякина и Ю. А. Овчинникова РАН
Россия

доктор биологических наук, главный научный сотрудник

Пущино



Ю. В. Бурменко
Федеральный научный селекционно-технологический центр садоводства и питомниководства
Россия

Юлия Владимировна Бурменко, кандидат биологических наук, старший научный сотрудник, заведующий отделом генетики и селекции плодовых и ягодных культур

ул. Загорьевская, 4, г. Москва, 115598



Список литературы

1. Nations U. World population prospects: the 2017 revision, key findings and advance tables. Department of Economics and Social Affairs PD, editor. New York: United Nations, 2017, 46 р.

2. World Food Programme, 2021. WFP Global Operational Response Plan 2021. Update №2. June, 2021, 46 р. https://docs.wfp.org/api/documents/WFP-0000129022/download/?_ga=2.212633428.1908339400.1624214515-%201052469607.1623686526

3. Singh R. K., Prasad A., Muthamilarasan M. et al. Breeding and biotechnological interventions for trait improvement: status and prospects. Planta. 2020;252(54):118. DOI: 10.1007/s00425-020-03465-4

4. Haruyama N., Cho A., Kulkarni A. B., Naoto H., Cho A., Kulkarni A. B. Overview: engineering transgenic constructs and mice. Current Protocols in Cell Biology. 2009;42(1):19-10. DOI: 10.1002/0471143030.cb1910s42

5. Лебедев В. Миф о трансгенной угрозе. Наука и жизнь. 2003;11:66-72.

6. Telem R. S., Wani S. H., Singh N. B., Nandini R., Sadhukhan R., Bhattacharya S., Mandal N. Cisgenics — a sustainable approach for crop improvement. Curr. Genomics. 2013;14:468-476.

7. Jacobsen E., Schouten H. J. Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Research. 2008;51:75-88.

8. Espinoza C., Schlechter R., Herrera D., Torres E., Serrano A., Medina C., Arce-Johnson P. Cisgenesis and intragenesis: new tools for improving crops. Biol. Res. 2013;46:323-331.

9. Wang T., Zhang H. & Zhu H. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic Res. 2019;6(1):1-13. DOI: 10.1038/s41438-019-0159-x

10. Базы данных последовательностей: GenBank, Европейский архив нуклеотидов и Банк данных ДНК Японии: URL: https://www.ncbi.nlm.nih.gov/home/about. Ссылка активна на 08.12.2021.

11. Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D., Rogers S. G., Fraley R. T. A simple and general method for transferring genes into plants. Science. 1985;4691(111):1229-1231. DOI: 10.1126/science.227.4691.1229

12. Padilla I. M. G., Burgos L. Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep. 2010;29(11):1203–1213. DOI: 10.1007/s00299-010-0900-2

13. James D. J., Passey A. J., Barbara D. J. Agrobacteriummediated transformation of apple and strawberry using disarmed Ti-binary vectors. I International Symposium on In Vitro Culture and Horticultural Breeding .1989;280:495-502.

14. Padilla I. M. G., Webb K., Scorza R. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant cell reports. 2003;22(1):38-45.

15. Szankowski I., Briviba K., Fleschhut J., Schonherr J., Jacobsen H. J., and H. Kiesecker. Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). PlantCellRep. 2003;22:141149.

16. Hattasch C., Flachowsky H., Hanke M-V. Evaluation of an alternative D-amino acid/DAAO selection system for transformation in apple (Malus×domestica Borkh.). The Journal of Horticultural Science and Biotechnology. 2009;84.6:188-194. DOI: 10.1080/14620316.2009.11512619

17. Chevreau E., et al. «Effect of ectopic expression of the eutypine detoxifying gene Vr-ERE in transgenic apple plants. Plant Cell, Tissue and Organ Culture (PCTOC). 2011:106(1):161-168.

18. Stoykova P., Stoeva-Popova P. “PMI (manA) as a nonantibiotic selectable marker gene in plant biotechnology.” Plant Cell, Tissue and Organ Culture (PCTOC). 2011;105(2):141-148.

19. Sidorova T., Mikhailov R., Pushin A. et al. A nonantibiotic selection strategy uses the phosphomannoseisomerase (PMI) gene and green fluorescent protein (GFP) gene for Agrobacterium-mediated transformation of Prunus domestica L. leaf explants. Plant Cell Tiss Organ Cult. 2017;128:197–209. DOI: 10.1007/s11240-016-1100-8

20. Kortstee A. J., et al. Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic research. 2011;20(6):12531264.

21. Айсанов Т. С., Манн А. В. Эффективность системы защиты яблони от парши в условиях интенсивного сада. Инновационная деятельность в модернизации АПК: материалы Международной научно-практической конференции студентов, аспирантов и молодых ученых: в 3 частях, Курск, 07 декабря 2016 г. — 09 декабря 2017 г., Курск, 2017, Курск, 71-75.

22. Bolar J. P., Norelli J. L., Wong K. W., Hayes C. K., Harman G. E., Brown S. K., and Aldwinckle H. S. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. TransgenicRes. 2001;10:533-543.

23. Krens F. A., et al. Performance and longterm stability of the barley hordothionin gene in multiple transgenic apple lines. Transgenic research. 2011;20(5):1113-1123.

24. Faize M., Sourice S., Dupuis F., Parisi L., Gautier M. F. and Chevreau E. Expression of wheat Puroindoline-b reduces scab susceptibility in transgenic apple (Malus×domestica Borkh.). PlantSci. 2004;167:347354.

25. Belfanti E., Barbieri M., Tartarini S., Vinatzer B., Gennari F., Paris R., et al. Gala apple transformed with the Putative Scab Resistance Gene HcrVf2. ActaHortic. 2004;663:453-456.

26. Malnoy M., Xu M., Borejsza-Wysocka E., Korban S. S., and Aldwinckle H. S. Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol. Plant-MicrobeInteract. 2008;21:448-458.

27. Malnoy M., Jin Q., Borejsza-Wysocka E., He S. Y., and Aldwinckle H. S. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus×domestica. Mol. Plant-MicrobeInteract. 2007;20:1568-1580.

28. Schlatholter I., Jansch M., Flachowsky H. et al. Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta. 2018;247:1475–1488. DOI: 10.1007/s00425-018-2876-z

29. Решение Совета Евразийской экономической комиссии от 30.11.2016 N 158 (ред. от 18.05.2021) “Об утверждении единого перечня карантинных объектов Евразийского экономического союза”. URL: http://www.consultant.ru/document/cons_doc_LAW_213644/ Ссылка активна на 08.12.2021.

30. Norelli J. L., Borejsza-Wysocka E., Reynoird J. P., and Aldwinckle H. S. Transgenic ‘Royal Gala’ apple expressing attacin E has increased field resistance to Erwinia amylovora (fire blight). ActaHort. (ISHS). 2000;538:631-633.

31. Liu Q., Ingersoll J., Owens L., Salih S., and Meng R. Response of transgenic Royal Gala apple (Malus?domestica Borkh.) shoots carrying a modified cecropin MB39 gene, to Erwinia amylovora. PlantCellRep. 2001;20:306-312.

32. Malnoy M. et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci. 2016;7:1904.

33. Reynoird J. P. et al. First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia.Plant Science. 1999;149(1):23-31.

34. Markwick N. P., Docherty L. C., Phung M. M., Lester M. T., Murray C., Yao J. L., et al.. Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res. 2003;12:671-81.

35. Gittins J. R., Pellny T. K., Biricolti S., Hiles E. R., Passey A. J., James D. J. Transgene expression in the vegetative tissues of apple driven by the vascular specificrol C and CoYMV promoters. Transgenic Res. 2003;12:391402.

36. Wenzel S., Flachowsky H., Hanke M. V. The Fasttrack breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus×domestica Borkh.). Plant Cell Tiss Organ Cult. 2013;115:127–137. DOI: 10.1007/s11240-013-0346-7

37. Freiman A., Shlizerman L., Golobovitch S., et al. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta. 2012;235(6):1239-1251. DOI: 10.1007/s00425-011-1571-0

38. Srinivasan C., Dardick C., Callahan A., Scorza R. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE. 2012;7:1-11. DOI: 10.1371/journal.pone.0040715

39. Meng, Yu-ping, et al. Transformation of Apple Cultivar Gala with a FT Gene Mediated by Agrobacterium tumefaciens [J]. Acta Agriculturae Boreali-Sinica. 2008;6.

40. Scorza R., et al. FasTrack’-a revolutionary approach to long-generation cycle specialty crop breeding. Meeting Abstract. 2012;101.

41. Van Nerum I., Incerti F., Keulemans J., Broothaerts W. Analysis of self-fertility in transgenic apple lines, transformed with an S-allele in sense or antisense direction. Acta Hort. (ISHS). 2000;538:625-630.

42. Espley R. V., Hellens R. P., Putterill J., Stevenson D. E., Kutty-Amma S., Allan A. C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007;49:414-427.

43. Lunkenbein S., Coiner H., Ric de Vos C. H., Schaart J. G., Boone M. J., Krens F. A, et al. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria×ananassa). J Agric Food Chem. 2006;54:2145-53.

44. Lunkenbein S., Salentijn E. M. J., Coiner H. A., Boone M. J., Krens F. A., Schwab W. Upand downregulation of Fragaria × ananassa O-methyltransferase: impacts on furanone and phenyl propa noid metab olism. J Exp Bot. 2006;b(57):2445–53.

45. Timerbaev V., Mitiouchkina T., Pushin A., Dolgov S. Production of Marker-Free Apple Plants Expressing the Supersweet Protein Gene Driven by Plant Promoter. Front Plant Sci. 2019;10:388. DOI: 10.3389/fpls.2019.00388

46. Park J. I., Lee Y. K., Chung W. I., Lee I. H., Choi J. H., Lee W. M., et al. Modification of sugar composition in strawberry fruit by antisense suppression of an ADPglucose pyrophosphorylase. Molec Breed. 2006;17:269-79.

47. Carter N. Petition for determination of nonregulated status: Arctic™ Apple (Malus x domestica) events GD743 and GS784. United States Department of Agriculture — Animal and Plant Health Inspection Service (2012).

48. Xu Kenong. “The next generation biotechnology for apple improvement and beyond: The CRISP/cas9 story.” NY Fruit Q 21. 2013, 19-22.

49. Escalettes V., Dahuron F., Ravelonandro M., Dosba F. Utilisation de la transgenose pour l’obtention de pruniers et d’abricotiers exprimant le gene de la proteine capside du plum pox potyvirus. Bull OEPP/EPPO. 1994;24:705–711. DOI: 10.1111/j.1365-2338.1994.tb01086.x

50. Scorza R., Ravelonandro M., Callahan A. M., Cordts J. M., Fuchs M., Dunez J., et al. Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep. 1994;14:18-22. DOI: 10.1007/BF00233291

51. Scorza R., Levy L., Damsteegt V., et al. Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus. J Am Soc Hortic Sci. 1995;120:943-952.

52. Polak J., et al. Transgenic plum Prunus domestica L., clone C5 (cv. HoneySweet) for protection against sharka disease. Journal of Integrative Agriculture. 2017;16(3):516522. https://DOI.org/10.1016/S2095-3119(16)61491-0

53. Sidorova T., Mikhailov R., Pushin A., Miroshnichenko D., Dolgov S. Agrobacterium-Mediated Transformation of Russian Commercial Plum cv. “Startovaya” (Prunus domestica L.) With Virus-Derived Hairpin RNA Construct Confers Durable Resistance to PPV Infection in Mature Plants Front Plant Sci. 2019;10:286. DOI: 10.3389/fpls.2019.00286

54. Sidorova T., Pushin A., Miroshnichenko D., Dolgov S. Generation of transgenic rootstock plum ((Prunus pumila L.×P. salicina Lindl.)×(P. cerasifera Ehrh.)) using hairpin-RNA construct for resistance to the plum pox virus. Agronomy (Basel). 2018;8(1):2. DOI: 10.3390/agronomy8010002

55. Wang X., Kohalmi S. E., Svircev A., et al. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS ONE. 2013;8(1):e50627. DOI: 10.1371/journal.pone.0050627

56. Gonzalez Padilla I. M., Webb K., Scorza R. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.) Plant Cell Rep. 2003;22:3845. DOI: 10.1007/s00299-003-0648-z

57. Song G.-Q., Sink K. C., Walworth A. E., Allison R. F., Cook M. A., Lang G. A. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnol. J. 2013;11(6):1-7. DOI: 10.1111/pbi.12060

58. Claverie M., Bosselut N., Lecouls A. C., et al. Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet. 2004;108:765773. DOI: 10.1007/s00122-003-1463-1

59. Alburquerque N., Faize L., Burgos L. Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot. Pest Manag Sci. 2017;73(10). DOI:10.1002/ps.4600

60. Petri C., Scorza R. Peach. In: Kole C, Hall T. C., editors. A compendium of transgenic crop plants: temperate fruits and nuts. Oxford: Blackwell Publishing. 2008, 79-92.

61. Kalariya H. M., Petri C., Scorza R., Schnabel G. Generation and characterization of transgenic plum lines expressing gafp-1 with the bul409 promoter. HortScience. 2011;46:975-980.

62. Srinivasan C., Liu Z., Scorza R. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) Plant Cell Rep. 2011;30:655-664. DOI: 10.1007/s00299-010-0993-7

63. Lloret A., Conejero A., Leida C., et al. Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep. 2017;7(1):332. DOI: 10.1038/s41598-017-00471-7

64. Faize M., Faize L., Petri C., et al. Cu/Zn superoxide dismutase and ascorbate peroxidase enhance in vitro shoot multiplication in transgenic plum. J Plant Physiol. 2013;170:625-632. DOI: 10.1016/j.jplph.2012.12.016

65. Druart P., Delporte F., Brazda M., Ugarte-Ballon C., da Camara Machado A., Laimer da Camara Machado M., Jacquemin J. y Watillon B. Genetic transformation of cherry trees. Acta Horticulturae. 1998;468:71-76.

66. Gutierrez-Pesce P., Taylor K., Muleo R. and Rugini E. Somatic embryogenesis and shoot regeneration from transgenic roots of cherry rootstock Colt (Prunus avium×P. pseudocerasus) mediated by pRi1855 T-DNA of Agrobacterium rhizogenes. PlantCellRep. 1998;17:574-80.

67. Asao H. et al. Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnology. 1997;14:145-149.

68. Ricardo V. G., Ricci J. C. D., Hernandez L., Castagnaro A. P. Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res. 2006;15:57-68.

69. Schestibratov K. A., Dolgov S. V. Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Scientia Horticulturae. 2005;106(2):177-189. 3 DOI:10.1016/j.scienta.2005.03.016

70. Mezzetti B., Costantini E., Chionchetti F., Landi L., Pandolfini T., Spena A. Genetic transformation in strawberry and raspberry for improving plant productivity and fruit quality. Acta Hortic. 2004a;649:107-10.

71. Wawrzynczak D., Michalczuk L., Sowik I. Modification in indole-3-acetic acid metabolism, growth and development of strawberry through transformation with maize IAA-glucose synthase gene (iaglu). Acta Physiol Plant. 2005;27:19-28.

72. Palomer X., Llop-Tous I., Vendrell M., Krens F. A., Schaart J. G., Boone M. J., et al. Antisense downregulation of strawberry endo-β-(1,4)-glucanase genes does not prevent fruit softening during ripening. Plant Sci. 2006;171:640-6.

73. Na J., Wang G. L., Xia R., Yang H. Y. Construction of anti-sense gene of annfaf and genetic transformation of strawberry. Sci Agric Sin. 2006;39:582-6. (in Chinese with English Abstract)

74. Georgieva M., Kondakova V., Djilianov D., Badjakov I., Yancheva S. Genetic transformation of raspberries by means of Agrobacterium tumefaciens. University of Craiova. 2008;XIII:5-14.

75. Jimenez-Bermudez S., Redondo-Nevado J., MunozBlanco J., Caballero J. L., Lopez-Aranda J. M., Valpuesta V., et al. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol. 2002;128:751-9.

76. Wang X. et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 2018;16:844–855.

77. Cardoso S. C., Barbosa-Mendes J. M., BoscariolCamargo R. L. et al. Transgenic Sweet Orange (Citrus sinensis L. Osbeck) Expressing the attacin A Gene for Resistance to Xanthomonascitri subsp. citri. PlantMolBiolRep. 2010;28:185–192. DOI: 10.1007/s11105-009-0141-0

78. Jia H., Orbovic V., Jones J. B., Wang N. Modification of the PthA4 effector binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol. 2016;14:1291-1301.

79. Peng A. et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. 2017;15:1509-1519.

80. Ding-li L. I., Xuan X., Wen-wu G. Production of Transgenic Anliucheng Sweet Orange (Citrus sinensisOsbeck) with Xa21 Gene for Potential Canker Resistance. Journal of Integrative AgricultureVolume 2014;13(11):2370-2377. DOI: 10.1016/S2095-3119(13)60675-9

81. Miyata L. Y., Harakava R., Stipp L. C., Mendes B. M., Appezzato-da-Gloria B., de Assis Alves MouraoFilho F. GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloemspecific promoters. PlantCellRep. 2012;31(11):2005-2013. DOI: 10.1007/s00299-012-1312-2

82. Attilio L. B., Mourao F. F. de A. A., Harakava R., Silva T. L. da, Miyata L. Y., Stipp L. C. L., Mendes B. M. J. Genetic transformation of sweet oranges with the D4E1 gene driven by the AtPP2 promoter. Pesquisa Agropecuaria Brasileira. 2013;48(7):741-747. https://DOI.org/10.1590/S0100-204X2013000700006

83. Distefano G., La Malfa S., Vitale A., Lorito M., Deng Z., Gentile A. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianumendochitinase during fungal infection. Transgenic Res. 2008;17(5):873-879. DOI: 10.1007/s11248-008-9172-9

84. Tripathi J. N. et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2019;2:1234567890. DOI: 10.1038/s42003-019-0288-7

85. Varkonyi-Gasic E. et al. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol. J. 2019;17(5):869-880. DOI: 10.1111/pbi.13021

86. Gumtow R., Wu D., Uchida J., Tian M. A. Phytophthora palmivora extracellular cystatin-like protease inhibitor targets papain to contribute to virulence on papaya. Mol. Plant Microbe. 2018;31:363-373.

87. Jia R., Zhao H., Huang J. et al. Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci Rep. 2017;7:12636. DOI: 10.1038/s41598-017-13049-0

88. Федеральный закон от 05.07.1996 N 86-ФЗ (ред. от 02.07.2021). «О государственном регулировании в области генно-инженерной деятельности. URL: http://www.consultant.ru/document/cons_doc_LAW_10944 Ссылка активна на 08.12.2021.


Рецензия

Для цитирования:


Гузеева А.А., Капитова И.А., Долгов С.В., Бурменко Ю.В. Достижения и перспективы биоинженерии садовых культур. Садоводство и виноградарство. 2021;(6):17-29. https://doi.org/10.31676/0235-2591-2021-6-17-29

For citation:


Guzeeva A.A., Kapitova I.A., Dolgov S.V., Burmenko Yu.V. Advances and outlook of horticultural bioengineering. Horticulture and viticulture. 2021;(6):17-29. (In Russ.) https://doi.org/10.31676/0235-2591-2021-6-17-29

Просмотров: 125


ISSN 0235-2591 (Print)
ISSN 2618-9003 (Online)