Vagra – A new disease-resistant wine grape cultivar for quality winemaking from the North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making
https://doi.org/10.31676/0235-2591-2025-6-5-14
Abstract
Russian vineyards face the problem of shortage of high-quality disease-resistant wine grape cultivars. Genotypes of domestic breeding exhibit higher adaptability to local growing conditions, which is particularly relevant in the context of climate change. The process of cultivation contributes to increased yield, reduced maintenance costs, and the promotion of environmentally sustainable viticulture development in the North Caucasus. This paper presents a study of the Vagra wine grape cultivar, a selection from the North Caucasian Federal Scientific Center of Horticulture, Viticulture, and Wine-making, presently under official state cultivar testing. The cultivar was developed using the Varuset interspecific hybrid as the maternal genotype and V. vinifera Granatovy as the paternal genotype. This hybrid was created as part of a breeding program aimed at developing cultivars resistant to downy and powdery mildew. An ampelographic description of the cultivar is provided according to UPOV standards. Vagra was identified as a mid-season cultivar with a frost resistance of up to -25 °C. Molecular genetic analysis determined the Vagra genotype to carry the downy mildew resistance locus Rpv3 (haplotype Rpv3null-297) and the powdery mildew resistance loci Ren3 and Ren9. In field conditions, the cultivar demonstrated moderate tolerance to downy mildew and high tolerance to powdery mildew. A DNA passport for the Vagra genotype was developed based on nine standard SSR markers recommended by the OIV, confirming the declared parentage. The results of agro-biological studies conducted in the Anapa Ampelographic Collection from 2018 to 2020 are presented. The agro-climatic data for the research period indicated that the sum of active temperatures was 17–25 % higher than the climatic norm. The wine material produced from the Vagra grape harvest is characterized by a dark ruby color and a rich aroma with notes of black and red berries, paprika, and nightshade. The wine has a full-bodied taste with moderate freshness, receiving a tasting score of 8.0. The research results indicate that the Vagra cultivar is promising for the production of high-quality dry red wines and for extending the grape assortment of the North Caucasus.
Keywords
About the Authors
E. G. PyataRussian Federation
Elena G. Pyata, Junior Researcher
Laboratory of Cultivar’s Study and Breeding of Grapes
350901; Wine-making, st. 40 years of Victory, 39; Krasnodar
M. V. Makarkina
Russian Federation
Junior Researcher
Laboratory of Cultivar’s Study and Breeding of Grapes
Krasnodar
E. T. Ilnitskaya
Russian Federation
PhD (Biol.), Senior Researcher
Laboratory of Cultivar’s Study and Breeding of Grapes
Krasnodar
A. A. Shirshova
Russian Federation
PhD (Tech.), Senior Researcher
Scientific Center «Wine-making»
Krasnodar
T. D. Kozina
Russian Federation
Postgraduate student, Junior Researcher
Laboratory of Cultivar’s Study and Breeding of Grapes
Krasnodar
E. A. Kozhevnikov
Russian Federation
Postgraduate student, Junior Researcher
Laboratory of Cultivar’s Study and Breeding of Grapes
Krasnodar
A. V. Prakh
Russian Federation
PhD (Agric.), Associate Professor, Senior Researcher
Scientific Center «Wine-making»
Krasnodar
G. Yu. Aleynikova
Russian Federation
PhD (Agric.), Head of the Center
Scientific Center «Viticulture»
Krasnodar
E. G. Yurchenko
Russian Federation
PhD (Agric.), Head of Center
Scientific Center «Рrotection and Вiotechnology of Plants»
Krasnodar
References
1. Rienth M., Vigneron N., Walker R. P. et al. Modifications of grapevine berry composition induced by main viral and fungal pathogens in a climate change scenario, Frontiers in Plant Science. 2021;8(12):717223. DOI: 10.3389/fpls.2021.717223.
2. Armijo G., Schlechter R., Agurto M. et al. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios, Frontiers in Plant Science. 2016;30(7):1-18. DOI: 10.3389/fpls.2016.00382.
3. Schmidt M., Strack T., Andrews H. et al. A new climate for genomic and epigenomic innovation in grapevine, Molecular Horticulture. 2025;5(44). DOI: 10.1186/s43897-025-00171-1.
4. Wan Y., Schwaninger H., He P. et al. Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes, VITIS – Journal of Grapevine Research. 2007;46:132-136. DOI: 10.5073/VITIS.2007.46.132-136.
5. Yang B., Li C., Li R. et al. A Dataset of SNPs Related to Downy Mildew Resistance in East Asian Grape Based on GBTS, Scientifi c Data. 2025;12(619). DOI: 10.1038/s41597-025-04765-8
6. Cadle-Davidson L., Chicoine D., Consolie N. Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator, Plant disease. 2011;95(2):202-211. DOI: 10.1094/PDIS-02-10-0092.
7. VITIS International variety catalogue VIVC. Table of loci for traits in grapevine relevant for breeding and genetics. Julius Kühn Institut. 2024. URL: https://www.vivc.de/docs/dataon-breeding/20240216_Table%20of%20Loci%20for%20Traits%20in%20Grapevine.pdf.
8. Vezzulli S., Vecchione A., Stefanini M. et al. Downy mildew resistance evaluation in 28 grapevine hybrids promising for breeding programs in Trentino region (Italy), European Journal of Plant Pathology. 2018;150:485-495. DOI: 10.1007/s10658-017-1298-2.
9. Zanghelini J. A., Bogo A., Dal Vesco L. L. et al. Response of PIWI grapevine cultivars to downy mildew in highland region of southern Brazil, European Journal of Plant Pathology. 2019;154:1051-1058. DOI: 10.1007/s10658-019-01725-y.
10. Giovanni R. N., Souza A. L. K. D., Caliari V. et al. Performance of resistant grape varieties (PIWI), «Felicia», «Calardis Blanc» and «Helios» in two locations of Santa Catarina State (BR), Revista Brasileira de Fruticultura. 2023;45:e-001. DOI: 10.1590/0100-29452023001.
11. Sillani S., Marangon F., Gallenti G. et al. Certification Strategies for Fungus-Resistant Grape Wines: An Exploratory Study in Italy, Designation and Sustainability. 2022;14(22):14871. DOI: 10.3390/su14221487.
12. Lazarevskij M. A. The study of grape varieties. Rostov-n/D: Rostovskiy universitet, 1963, 151 s. (in Russ.).
13. Petrov V. S., Aleynikova G. Yu., Marmorshtein A. A. Research methods in viticulture: Uchebnoe posobie. Krasnodar: FGBNU SKFNCSVV, 2021, 147 s. (in Russ.).
14. Egorov E. A., Il`ina I. A., Ageeva N. M., et al. Biotechnologies in the management of production processes in horticulture, viticulture, winemaking, Sbornik zavershenny`x nauchny`x razrabotok. Krasnodar: FGBNU SKFNCSVV, 2022, 94 s. (in Russ.).
15. Rogers S. O., Bendich A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummifi ed plant tissues, Plant Molecular Biology. 1985;19(1):69-76.
16. Ilnitskaya E. T., Makarkina M. V., Kozina T. D, et al. Identifi cation of Rpv3 and Rpv12 loci in the progenies of the «Talisman» grape cultivar, Proceedings on applied botany, genetics and breeding. 2023;184(1):187-193. DOI: 10.30901/2227-8834-2023-1-187-193. (in Russ.).
17. Makarkina M., Ilnitskaya E., Kozina T. Search for donors of powdery mildew resistance genes among seedless and table grape varieties, BIO Web of conferences. 2021;39:02005. DOI: 10.1051/bioconf/20213902005.
18. Resolution OIV-VITI 702-2023. Publication of the 3<sup>rd</sup> edition of “OIV descriptor list of grape vine varieties and Vitis species”. OIV, 2023. URL: https://www.oiv.int/node/3028/down-load/pdf.
19. Zendler D., Schneider P., Töpfer R. et al. Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine, Euphytica. 2017;213:68. DOI: 10.1007/s10681-017-1857-9.
20. Van Heerden C. J., Burger P., Vermeulen A. et al. Detection of downy and powdery mildew resistance QTL in a ‘Regent’בRedGlobe’ population, Euphytica. 2014;200:281-295. DOI: 10.1007/s10681-014-1167-4.
21. Di Gaspero G., Copetti D., Coleman C., et al. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance, Theoretical and Applied Genetics. 2012;124:227-286. DOI: 10.1007/s00122-011-1703-8.
22. Guidelines for the conduct of tests for distinctness, uniformity and stability, Grapevine, International union for the protection of new varieties of plants (UPOV), TG/50/10(proj.9), Code(s): VITIS, Vitis L. Geneva, 23.01.2025. URL: https://www.upov.int/edocs/mdocs/upov/en/tc_61/tg_50_10_proj_9.pdf.
23. Negrul’ A. M. Viticulture and winemaking. M.: Kolos, 1968, 512 s. (in Russ.).
24. Shelud’ko O. N, Prakh A. V, Chemisova L. E. Biochemical and technological features of grape varieties, forms and clones of FSBSI NCFSCHVW BREEDING, Plodovodstvo i vinogradarstvo YUga Rossii. 2023;83(5):188-204. DOI: 10.30679/2219-5335-2023-5-83-188-204. (in Russ.).
Review
For citations:
Pyata E.G., Makarkina M.V., Ilnitskaya E.T., Shirshova A.A., Kozina T.D., Kozhevnikov E.A., Prakh A.V., Aleynikova G.Yu., Yurchenko E.G. Vagra – A new disease-resistant wine grape cultivar for quality winemaking from the North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making. Horticulture and viticulture. 2025;(6):5-14. (In Russ.) https://doi.org/10.31676/0235-2591-2025-6-5-14






























